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The fossil record of Australian dinosaurs in general, and theropods in particular, is extremely sparse. Here

we describe an ulna from the Early Cretaceous Eumeralla Formation of Australia that shares unique

autapomorphies with the South American theropod Megaraptor. We also present evidence for the

spinosauroid affinities of Megaraptor. This ulna represents the first Australian non-avian theropod with

unquestionable affinities to taxa from other Gondwanan landmasses, suggesting faunal interchange

between eastern and western Gondwana during the Mid-Cretaceous. This evidence counters claims of

Laurasian affinities for Early Cretaceous Australian dinosaur faunas, and for the existence of a geographical

or climatic barrier isolating Australia from the other Gondwanan continents during this time. The temporal

and geographical distribution of Megaraptor and the Eumeralla ulna is also inconsistent with traditional

palaeogeographic models for the fragmentation of Gondwana, but compatible with several alternative

models positing connections between South America and Antarctica in the Mid-Cretaceous.
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1. INTRODUCTION
The fossil record of Australian dinosaurs in general, and

theropods in particular, is extremely sparse (Molnar

1991). Described Cretaceous theropod remains from the

Early Cretaceous of southern Victoria include material

from the Upper Strzelecki Group (Middle Valanginian–

Aptian) that has been identified as Allosaurus (Molnar

et al. 1981, 1985). This specimen represents the only

continental tetrapod from the Cretaceous of Australia that

has been referred to a genus known from another

continent (Molnar 1992). Several authors have challenged

Molnar et al.’s (1981, 1985) interpretation of this speci-

men as an allosaurid (e.g. Welles 1983; Chure 1998, 2000,

unpublished dissertation) and, recently, it has been

reinterpreted as an abelisauroid (Agnolin et al. 2005;

Salisbury et al. 2007; R. Molnar 2008, personal

communication), although further comparisons are

required to confirm this. Slightly younger theropod

specimens from the Eumeralla Formation at Dinosaur

Cove (Late Aptian–Early Albian) have been referred to
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coelurosaurian clades that otherwise have exclusively

Laurasian distributions, such as ornithomimosaurs

(Timimus hermani; Rich & Vickers-Rich 1994) and

oviraptorosaurs (Currie et al. 1996). These identifications,

coupled with the presence of ceratopsians (Rich &

Vickers-Rich 2003), and the perceived absence of

diagnostic remains of typical Gondwanan theropod clades

such as abelisaurids, noasaurids, carcharodontosaurids

and spinosaurids, has prompted researchers to conclude

that the Early Cretaceous dinosaur fauna of Australia

shares stronger affinities with Laurasian faunas than with

other Gondwanan faunas (e.g. Rich & Vickers-Rich 1994,

2003; Currie et al. 1996; Vickers-Rich & Rich 1997;

though see Molnar 1992; Upchurch et al. 2002). Until the

recent discovery of the Yixian Formation fauna, several of

the Australian remains were interpreted as the earliest

records for their respective groups, and researchers

have suggested that Australia and/or Gondwana may

have been the centre of origin for some of these dinosaur

clades (Rich & Vickers-Rich 1994; Currie et al. 1996;

Vickers-Rich & Rich 1997).

Among the remains collected from the Eumeralla

Formation at Dinosaur Cove, Rich & Vickers-Rich

(2003; fig. 8) figured but did not describe an isolated

left theropod ulna (NMV P186076; figure 1). This

ulna shares unique autapomorphies with the enigmatic
This journal is q 2008 The Royal Society
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Figure 1. Cf. Megaraptor (NMV P186076), left ulna: (a) lateral aspect, (b) cranial aspect, (c) medial aspect, (d ) proximal aspect
(cranial is to the left and medial is to the top of the page), (e) distal aspect (medial is to the left and cranial is to the top of the
page). Abbreviations: corp ul, ulnar shaft; cr caud, caudal crest; cr lat, lateral crest; ext dist, distal extremity; ext prox, proximal
extremity; fac art carp, carpal articular surface; fac art hu, humeral articular surface; fac art rad dist, distal radial articular
surface; proc corn, coronoid process; proc ol, olecranon process; tub lat, lateral tuberosity.
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Argentine theropod Megaraptor (Novas 1998; Calvo et al.

2004; Salisbury et al. 2007). In addition to somphospon-

dyl titanosauriforms (Salgado 1993; Molnar 2000;

Molnar & Salisbury 2005; Salisbury et al. 2006), this

specimen represents some of the best evidence thus far

for what can be considered Gondwanan elements in the

Early Cretaceous dinosaur fauna of Australia. Herein,

we describe this specimen and provide evidence for its

affinities. We also present evidence for the phylogenetic

relationships of Megaraptor, and discuss the implications

for Gondwanan theropod palaeobiogeography and diver-

sity through time in light of the Australian material.
2. DESCRIPTION AND COMPARATIVE ANATOMY
(a) Systematic palaeontology

Theropoda (Marsh 1881)

Tetanurae (Gauthier 1986)

cf. Megaraptor (Novas 1998)

(b) Material

NMV P186076, a nearly complete left ulna (figure 1; see

electronic supplementary material 1 for institutional

abbreviations).

(c) Locality and horizon

NMV P186076 was found at Dinosaur Cove, near

Cape Otway, Victoria, Australia (38846 053G1 0 S,

143824 014G1 0 E, World Geodetic Standard 1984; figure

S2 in the electronic supplementary material). It was

collected in situ in 1989 from a palaeostream channel

during tunnelling operations in the First Cross Tunnel at
Proc. R. Soc. B
the ‘Slippery Rock’ site, Dinosaur Cove, as part of a series

of excavations between 1984 and 1994 overseen by Rich &

Vickers-Rich (2000; fig. 44).

Material from Dinosaur Cove is known to pertain to the

Eumeralla Formation (Middle Valanginian–Albian) of the

Otway Group, and is dated palynologically as Early

Cretaceous, and specifically as Late Aptian–Early Albian

(Wagstaff & McEwen-Mason 1989). This formation has

produced a diverse vertebrate fauna. In addition to the

aforementioned theropod material, this fauna includes

ornithopod dinosaurs, pterosaurs, crocodyliforms, bony

fishes, ceratodid lungfishes and a monotreme (Rich &

Vickers-Rich 2000; Pridmore et al. 2006).
(d) Description and comparisons

NMV P186076 has a total length of 192.6 mm. It is well

preserved, but the shaft and proximal extremity show some

breaks and are missing small areas. The medial surface of

the shaft and distal-most part of the proximal extremity are

crushed, and the proximal portion of the lateral crest is

broken. The articular surface of the olecranon process

is slightly abraded.

Overall, the ulna is massive proximally but tapers to a

slender shaft distally. The caudal surface of the bone has a

modestly convex outline, whereas the cranial surface is

concave. The olecranon process is proportionately very

large and rises dorsally above the humeral articular surface

(Z‘sigmoid notch’ of some authors) as a tall blade. Unlike

the condition in most theropods, such as Dilophosaurus

(UCMP 37302) and Piatnitzkysaurus (PVL 4073), which

have a low olecranon process that is roughly spherical,
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the olecranon of NMV P186076 is dorsally expanded

but strongly compressed mediolaterally. Despite this, the

olecranon process of NMV P186076 still retains a

proximally convex outline in lateral aspect, as is typical

for most theropods. Several spinosaurids, including

Baryonyx walkeri (BMNH R9951) and Suchomimus

tenerensis (MNN GAD 500; ZBaryonyx tenerensis of

some authors; e.g. Sues et al. 2002), have a hypertrophied

olecranon process that is flattened mediolaterally.

However, in these taxa, the long axis of the olecranon

process is directed proximocaudally in relation to the long

axis of the shaft, rather than proximally as in NMV

P186076 and other theropods. The olecranon process of

Suchomimus and Baryonyx also extends more medially at an

oblique angle relative to the coronoid process (Z‘anterior

process’ of some authors) when viewed proximally, whereas

in most other theropods, including NMV P186076, the

long axis of the olecranon is in the same plane as the long

axis of the coronoid process (figure S3 in the electronic

supplementary material). The olecranon process of NMV

P186076 continues as a blade-like crest onto the caudal

surface of the proximal extremity, fading out along the

proximal-most third of the ulnar shaft. A blade-like caudal

olecranon crest also occurs in the holotype of Megaraptor

namunhuaiquii (MCF-PVPH 79), and in a referred

specimen (MUCPv 341). This morphology is not observed

in any other theropod taxa (figures S3 and S4 in the

electronic supplementary material).

An interesting feature of NMV P186076 is the presence

of a well-developed proximodistally aligned crest on the

lateral surface of the proximal half of the ulna (figure 1a).

The lateral-most projection of this crest is missing, but based

on its shape on either side of the break, it most likely formed

a rounded tuberosity (the ‘lateral’ or ‘radial’ tuberosity).

The lateral tuberosity would have been level with the apex of

the coronoid process in lateral aspect, and was probably

continuous with the humeral articular surface proximally.

Distal to the broken tuberosity, the lateral crest extends onto

the proximal half of the ulnar shaft, gently arching caudally.

This unusual morphology is present in no other theropod

taxon, with the exception of the holotype and referred

specimens of M. namunhuaiquii. Several spinosauroids,

including Poekilopleuron ( YPM 4839), Torvosaurus (UCRC

PVC25), Baryonyx and Suchomimus, have lateral tuberos-

ities that are well developed relative to most theropods

(figures S3 and S4 in the electronic supplementary

material). However, in these taxa, it is only the lateral

tuberosity that is enlarged, and there is no evidence of a

proximodistally aligned crest extending distally from it as

there is in NMV P186076 and M. namunhuaiquii.

The coronoid process of NMV P186076 projects

cranially from the proximal extremity to form a sharp

triangular outline in lateral and medial aspects. The medial

surface of the coronoid process is flat, and continuous

with the medial surface of the olecranon process, as in

the holotype (MCF-PVPH 79) and referred specimen

(MUCPv 341) of M. namunhuaiquii. In spinosauroids such

as Torvosaurus, Baryonyx and Suchomimus, this surface is

slightly medially concave.

The expanded blade-like distal portions of the olecra-

non process and the lateral crest of NMV P186076

form the borders of a broad caudolaterally facing shallow

fossa. This area may represent an insertion for the

m. triceps brachii complex as in modern crocodyliforms
Proc. R. Soc. B
(Meers 2003). The size and position of this insertion

indicate powerful forearm extension, and by inference, a

proportionally large manus. Among theropods, a similarly

well-developed fossa is only present in the holotype and

referred specimens of M. namunhuaiquii, a taxon distin-

guished by its proportionally large manus with enlarged

unguals. In the spinosaurids Baryonyx and Suchomimus,

which also have a large manus and unguals, the junction of

the olecranon crest and lateral tuberosity also creates a

large fossa, though this fossa is considerably broader and

shallower than in NMV P186076 and M. namunhuaiquii,

and faces more caudally.

The ulnar shaft of NMV P186076 attenuates rapidly

distal to the caudal crest associated with the olecranon

process. The distal extremity is only weakly expanded

relative to the shaft, in contrast to spinosaurids, in which

the distal extremity of the ulna is broadly expanded

mediolaterally (figure S5 in the electronic supplementary

material). The craniolateral face of the distal extremity is

flattened slightly, being demarcated from the more convex

proximal parts of the shaft by a low lateral ridge. This

surface presumably articulated with the distal extremity of

the radius. Novas (1998) figured a shallow flattened

depression located in an identical part of the ulna of the

holotype of M. namunhuaiquii. The referred specimen of

M. namunhuaiquii (MUCPv 341) is also flattened in this

region, though not as depressed as in the holotype

specimen. Novas (1998) considered the triangular

outline of the distal articulation of M. namunhuaiquii as

diagnostic of this taxon. In both the holotype and

referred specimens of M. namunhuaiquii, the distal articular

surface of the ulna is slightly expanded medially into a

rounded point, though this expansion is more prominent

in the holotype specimen. A slight medial expansion is

evident in NMV P186076, but it is less distinct than that of

M. namunhuaiquii (figure S5 in the electronic supple-

mentary material).

Despite the marked similarities between the morphology

of NMV P186076 and the ulnae currently attributed to

M. namunhuaiquii, several minor differences exist, though

it is not clear whether these differences can be attributed

to ontogenetic or individual variation, or whether they

constitute distinct features of the Australian specimen

and the taxon to which it pertains. NMV P186076 is

considerably smaller, having a maximum length that is just

over half that of both described ulnae of M. namunhuaiquii.

It also lacks the distinctly triangular distal outline of the

distal articular surface observed in MCF-PVPH 79,

MUCPv 412 and MUCPv 341, a feature considered

diagnostic of M. namunhuaiquii by both Novas (1998) and

Calvo et al. (2004; figure S5 in the electronic supple-

mentary material). The shaft of NMV P186076 is also

more curved than that of the holotype ulna of

M. namunhuaiquii, which is nearly straight (figure S4 in

the electronic supplementary material). A slight degree of

curvature is observed in a referred specimen (MUCPv 341)

of M. namunhuaiquii from Lago Barreales (figure S4 in the

electronic supplementary material). The olecranon process

of NMV P186076 is slightly more proximocaudally convex

than in either the holotype or the referred specimen of

M. namunhuaiquii, and its cranial edge that continues onto

the humeral articular surface is steeper and exhibits a slight

sigmoid curvature compared with the olecranon processes

of the M. namunhuaiquii specimens.
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(e) Taxonomic conclusions

In common with M. namunhuaiquii, NMV P186076

possesses: (i) a proximocaudally expanded blade-like

olecranon process that extends distally as a caudal

olecranon crest and (ii) a pronounced lateral tuberosity

that is continuous distally with a distinct lateral crest.

These features are well preserved in two specimens of

M. namunhuaiquii (MCF-PVPH 79 and MUCPv 341),

and in NMV P186076, and in none is this area affected

by damage or deformation. No other theropod displays

these traits in their ulna. Although several spinosaurids

(e.g. Baryonyx and Suchomimus) possess an enlarged

and mediolaterally compressed olecranon process, it

differs both in shape and its angle relative to the lateral

tuberosity. Novas (1998) cited the triangular outline

of the distal extremity of the ulna as an autapomorphy of

M. namunhuaiquii. Although Calvo et al. (2004) noted

some minor variation in the degree of medial expansion of

the distal ulna between the holotype and a referred

specimen (MUCPv 341) of M. namunhuaiquii, they also

considered this morphology unique to the species.

However, at least some specimens of Allosaurus (e.g.

YPM 4944), and Poekilopleuron, possess similar medial

expansions of the distal ulna, though most other

tetanurans (e.g. Piatnitzkysaurus; Torvosaurus), and more

basal theropods (e.g. Liliensternus MB R. 2175) do not

(figure S5 in the electronic supplementary material).

Unlike the Argentine specimens of M. namunhuaiquii,

the distal articular surface of NMV P186076 has a circular

rather than distinctly triangular outline, which may be a

derived trait of M. namunhuaiquii. This difference, and

possibly its smaller size, indicates that NMV P186076 is

most likely distinct from M. namunhuaiquii, as defined by

Novas (1998) and Calvo et al. (2004). While further

discoveries may demonstrate that NMV P186076 pertains

to an Australian species of Megaraptor, it is equally

probable that it represents a taxon that is closely related

to, but distinct from Megaraptor. In the absence of any

material to the contrary, we therefore consider it judicious

to refer NMV P186076 to Tetanurae cf. Megaraptor. The

minor differences between M. namunhuaiquii and NMV

P186076 do not warrant erecting a new taxon for the

Australian material without more data (see electronic

supplementary material 6 for emended systematic

palaeontology for Megaraptor).
3. PHYLOGENETIC ANALYSIS
To assess the relationships of Megaraptor and NMV

P186076, we performed a phylogenetic analysis using a

dataset modified from that of Smith et al. (2007). In

addition to Megaraptor and NMV P186076, the carchar-

odontosaurid Mapusaurus was added to the dataset.

Several new characters were constructed, and codings

for some taxa were revised. In total, 58 taxa were

scored for 353 characters (see electronic supplementary

material 6 for a complete character list and codings for

all included taxa). Phylogenetic analyses were performed

using PAUP� v. 4.0b10 (Swofford 2002). Bootstrap

support (Felsenstein 1985) and Bremer decay indices

(Bremer 1988) were calculated to assess support for nodes

in the resulting most parsimonious trees (MPTs) (see

electronic supplementary material 7 for additional details

of the phylogenetic analyses).
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4. DISCUSSION
(a) Phylogenetic and palaeobiological implications

NMV P186076 represents the first Cretaceous dinosaur

specimen from Australia that can confidently be allied

with a genus known from another continent. Several

minor differences between NMV P186076 and the South

American Megaraptor material do exist, the most notable

of which is the smaller size of the Australian specimen.

Although ecological factors related to palaeoclimate and/or

high palaeolatitude (Rich et al. 1988, 1992) have been

suggested as possible explanations for the predominance of

small-bodied dinosaurs in the Victorian assemblage, there is

currently not enough evidence to assess whether the smaller

size of NMV P186076 is due to: (i) phylogenetic divergence

(potentially related to the above factors), (ii) ontogeny, or

(iii) individual variation. Additionally, the bias towards

smaller individuals in the Victorian assemblages probably

relates to taphonomic processes (Rich et al. 1988; T. H. Rich

2007, personal communication).

Owing primarily to a dearth of diagnostic material, the

phylogenetic position of Megaraptor has remained elusive

since its discovery (Novas 1998; Calvo et al. 2004). Novas

(1998) tentatively referred Megaraptor to the derived

theropod clade Coelurosauria, primarily based on the

gracile proportions of the third metatarsal of the holotype

specimen. Recovery and description of additional

Megaraptor remains by Calvo et al. (2004) allowed for

some clarification of the taxon’s affinities. Calvo et al.

(2004) discussed a variety of features in the axial skeleton

of Megaraptor, which are also present in carcharodonto-

saurids, but also noted that the appendicular material of

Megaraptor shares several traits with spinosauroids (e.g.

Baryonyx and Torvosaurus). Although they presented no

phylogenetic analysis, Calvo et al. (2004) suggested that

the suite of characters present in Megaraptor allow it to be

considered a non-neotetanuran (ZAllosauroidea and

Coelurosauria, sensu Sereno 1999) tetanuran theropod,

and further proposed that it represents a unique theropod

lineage, distinct from the main theropod clades present at

this time (e.g. Abelisauroidea, Spinosauridae, Carchar-

odontosauridae and Allosauridae). Smith et al. (2007)

presented the first cladistic analysis of the phylogenetic

relationships of Megaraptor, recovering it as a carchar-

odontosaurid more closely related to Giganotosaurus

and Carcharodontosaurus than to either Tyrannotitan or

Sinraptor. However, support for this result is relatively

weak and based mainly on several vertebral synapomor-

phies (all of which exhibit some level of homoplasy)

including the presence of two cervical pleurocoels, the

staggered position of the paired cervical pleurocoels

separated by a solid oblique strut of bone, a prezygapo-

physeal–epipophyseal crest on the cervical neural arch and

the presence of pleurocoels in the caudal vertebrae (Smith

et al. 2007; figure S9 in the electronic supplementary

material). Hyposphene/hypantrum-like accessory articu-

lations in the cervical vertebrae are also present in

Megaraptor and carcharodontosaurids, though the distri-

bution of this character among theropods is poorly

documented (Smith et al. 2007; figure S9 in the electronic

supplementary material).

Phylogenetic analysis of the complete dataset resulted

in the recovery of 172 MPTs, each of 853 steps, with a

consistency index of 0.484, and a retention index of 0.772.

Megaraptor and NMV P186076 are recovered as derived
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members of Spinosauroidea (figure 2; electronic supple-

mentary material 8). Three additional steps are required to

recover Megaraptor and NMV P186076 as members of

Carcharodontosauridae, similar to the topology recovered

in the original analysis of Smith et al. (2007). Bootstrap and

Bremer support values for Spinosauroidea and its less-

inclusive clades are low (figure S8 in the electronic

supplementary material), and suggest that the phylogenetic

relationships of Megaraptor should still be regarded as

tentative (Calvo et al. 2004; Smith et al. 2007). However,

several characters support the placement of Megaraptor

as a spinosauroid, including: a hypertrophied manual

ungual I-2 (present in Baryonyx, Suchomimus, Megaraptor

and Torvosaurus; convergently present in Sinosauropteryx);

a hypertrophied ulnar lateral tuberosity (present in

Baryonyx, Suchomimus, Megaraptor, NMV P186076 and

Torvosaurus); a manual phalanx I-1 with a pronounced

ventral groove (present in Baryonyx and Megaraptor); and

a compressed blade-like olecranon process (present in

Baryonyx, Suchomimus, Megaraptor, NMV P186076

and absent in Torvosaurus). An additional feature that

Megaraptor shares with the spinosaurids Baryonyx and

Suchomimus is the presence of an expanded triangular

cranial process on the proximal radius (figure S9 in the
Proc. R. Soc. B
electronic supplementary material). Though the distri-

bution of this character among theropods is poorly

documented at present, a hypertrophied cranial process

of the radius is absent in the allosaurid Allosaurus ( YPM

4944), and the carcharodontosaurid Mapusaurus (Coria &

Currie 2006).

The stratigraphic range extension provided by NMV

P186076 is in accord with the length of the ghost lineage

separating Megaraptor from the Spinosauridae, which

originated by the Barremian. Furthermore, given the

Late Turonian–Early Coniacian age of the Portezuelo

Formation (Leanza et al. 2004), Megaraptor represents the

youngest known member of Spinosauroidea, and increases

the overlap between typical ‘Middle’ and ‘Late’ Cretaceous

Gondwanan theropod faunas (Novas et al. 2005; Smith

et al. 2007). Additional fossil material of Megaraptor and/

or its close relatives will be crucial to testing the robustness

of its placement within Spinosauroidea, and further

refining the phylogenetic affinities of this enigmatic taxon.
(b) Palaeobiogeographic implications

NMV P186076 represents the first Australian theropod

with well-supported affinities to a taxon from another

Gondwanan landmass, and suggests faunal interchange
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between the eastern and western extremes of this super-

continent at least by the Turonian, and possibly during the

later part of the Early Cretaceous (Calvo et al. 2004).

Importantly, this biogeographic signal derives from the

close relationship between NMV P186076 and Megaraptor,

and is not dependant on the inferred spinosauroid affinities

of Megaraptor, though it should also be noted that

Cretaceous spinosauroids are predominantly a Gondwanan

clade (Sereno et al. 1998; Sues et al. 2002). Thus, in

addition to unique faunal elements such as the basal

iguanodontian Muttaburrasaurus (Bartholomai & Molnar

1981), and relicts of ancient lineages such as temnospondyl

amphibians (Warren et al. 1997), ausktribosphenid and

monotrematan mammals (Pridmore et al. 2006; australo-

sphenidans sensu Kielan-Jaworowska et al. 2004),

dicynodont synapsids (Thulborn & Turner 2003) and the

freshwater mussel Mesohydriaela ipsviciensis (Dettmann

et al. 1992), there is now clear evidence for palaeobiogeo-

graphic connections to the rest of Gondwana as predicted

from palaeogeographic reconstructions (Smith et al. 1994;

Hay et al. 1999; Scotese 2001; Sereno et al. 2004), and

hitherto only weakly supported by palaeobiogeographic

analyses (Molnar 1992; Upchurch et al. 2002) or tentative

referrals (Molnar 1992, p. 261; Rauhut 2005, p. 105).

Somphospondyl titanosauriform sauropods have recently

been recognized as a common element of northern

Australia’s Mid-Cretaceous dinosaur fauna (Salgado

1993; Molnar 2000; Molnar & Salisbury 2005; Salisbury

et al. 2006), which is reminiscent of the South American

Cretaceous. Reports of Australian dinosaurs with potential

palaeobiogeographic connections to Asia, such as ornitho-

mimosaurs, oviraptorosaurs and neoceratopsians (Rich &

Vickers-Rich 1994, 2003; Currie et al. 1996) have recently
Proc. R. Soc. B
been questioned (Salisbury et al. 2007), with alternative

interpretations supporting links to terrestrial vertebrate

faunas from adjoining Gondwanan landmasses (Salisbury

et al. 2007). The presence of Megaraptor, or a close relative,

in the Early Cretaceous of Australia also weakens claims for

the existence of a geographical or climatic barrier isolating

Australia from the rest of Gondwana during this time (Rich

et al. 1988; Molnar 1992; Thulborn & Turner 2003).

Although a quantitative analysis of the palaeobiogeo-

graphic relationships of the Early Cretaceous fauna of

Australia is beyond the scope of the present paper, it can

be instructive to assess the relative consistency of the new

data presented here with existing palaeogeographic

models. Three general models have been proposed

regarding the fragmentation of Gondwana during the

Cretaceous (Upchurch 2006, 2008). These include: (i) a

‘traditional’ model, in which Gondwana is initially divided

into separate western (Africa and South America) and

eastern (Antarctica, India, Madagascar and Australia)

parts in the Early Cretaceous, ca 138 Myr ago (figure 3a–c;

Smith et al. 1994; Scotese 2001), (ii) the ‘Africa-first’

model, in which Africa is isolated from other Gondwanan

landmasses before the beginning of the Late Cretaceous,

and South America, Antarctica, and Australia remain

connected until the Early Tertiary (figure 3d–f ; Hay et al.

1999; Krause et al. 2007), and (iii) the ‘Pan-Gondwana’

model, in which three land bridges connected the

southern continents through the Early Cretaceous and

were severed during a relatively brief interval at the

beginning of the Late Cretaceous (Sereno et al. 2004).

The presence of NMV P186076 in the Late Aptian–Early

Albian of Australia and Megaraptor as early as the

Middle Cenomanian of Argentina is largely consistent
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with models (ii) and (iii), which suggest more cosmopo-

litan distributions of Mid-Cretaceous terrestrial taxa.

Alternative palaeogeographic scenarios, such as an initial

rifting of western and eastern Gondwana followed by

subsequent reconnection of South America and Antarctica,

could also account for the observed pattern of Megaraptor

and NMV P186076 distribution, and that of other

Cretaceous vertebrates (Turner 2004; Upchurch 2006,

2008). However, reconciling the temporal and geographi-

cal distributions of Megaraptor and NMV P186076

with the traditional palaeogeographic model would

require either (i) cross-seaway dispersal of Megaraptor or

a close relative during the Mid-Cretaceous or (ii) that the

most recent common ancestor of the Australian and

Argentine materials existed prior to the Valanginian

(ca 138 Myr ago), and the two lineages were isolated

during the initial split between western and eastern

Gondwana. Depending on the exact age of Baryonyx

and phylogenetic resolution within Spinosauroidea, ghost

lineages implied by phylogeny may extend the lineage

leading to Megaraptor and NMV P186076 to the base

of the Barremian (figure 2), but do not necessarily extend

the age of the most recent common ancestor of

NMV P186076 and Megaraptor. Thus, we consider the

observed temporal and geographical distribution of NMV

P186076 and Megaraptor to be less consistent with the

traditional model of Gondwanan fragmentation, and more

consistent with a model that proposes connections

between Australia, Antarctica and South America during

the Mid-Cretaceous (Hay et al. 1999; Sereno et al. 2004;

Krause et al. 2007).

Geological evidence suggests that land connections

between southern South America and the West Antarctic

Archipelago persisted until at least the Late Eocene, at

the earliest proposed opening of the Drake Passage

(Livermore et al. 2005). It was not until the Late

Cretaceous (ca 84 Myr ago; Veevers et al. 1991) that

Australia and Antarctica began to separate, with the

continental microplate of the South Tasman Rise between

southeastern Australia and Antarctica submerging as early

as the Late Cretaceous (ca 64 Myr ago; Woodburne &

Case 1996). Thus, both land connections between South

America and Antarctica, and Antarctica and Australia

were not likely to have been severed until long after the

occurrence of NMV P186076 in Australia and Megaraptor

in Argentina. Fossil evidence from terrestrial vertebrates

(including dinosaurs) also supports the maintenance of

these land connections into the Late Cretaceous and Early

Tertiary (Woodburne & Case 1996; Rougier et al. 1998;

Case et al. 2000; Krause et al. 2007). Furthermore,

distribution patterns of numerous extant plants and

animals are consistent with the inference of significant

amounts of dispersal between Australia and South

America during the Late Cretaceous–Early Tertiary

(Sanmartı́n & Ronquist 2004).

Finally, if Megaraptor is indeed a member of Spinosaur-

oidea, NMV P186076 represents the first occurrence of

this group in Australia, and would further predict the

presence of spinosauroids in Antarctica during the Mid-

Cretaceous. Analysis of Cretaceous terrestrial vertebrate

palaeobiogeography has been hampered by lack of

phylogenetic control, and poor records in several geo-

graphical areas, including Australia (Molnar 1992;

Upchurch et al. 2002; Turner 2004; Krause et al. 2007).
Proc. R. Soc. B
NMV P186076 adds a crucial, phylogenetically con-

strained data point from such an area, which may be

valuable to future palaeobiogeographic analyses.
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